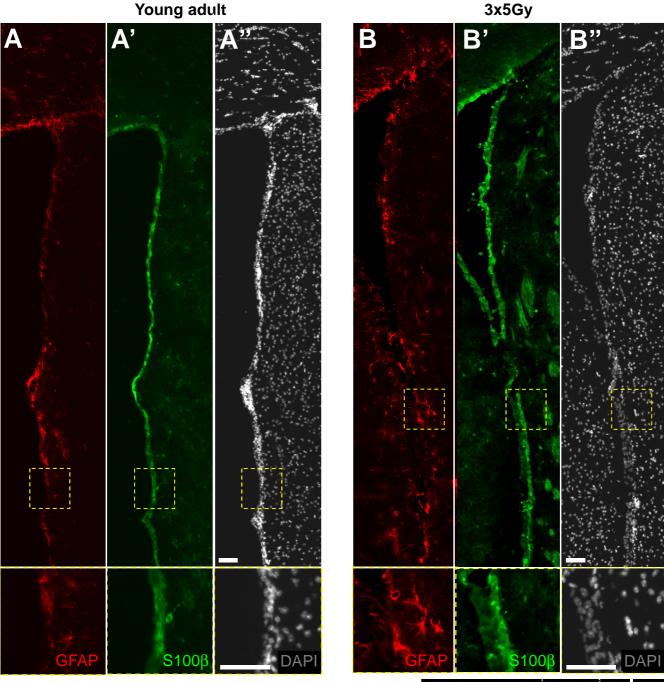
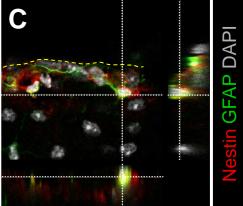
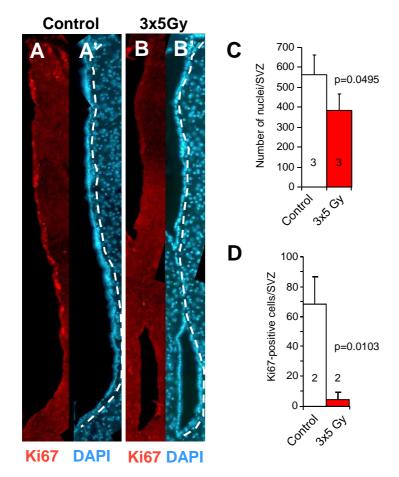

Supplementary informations for:

Vascular-derived TGF- β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain

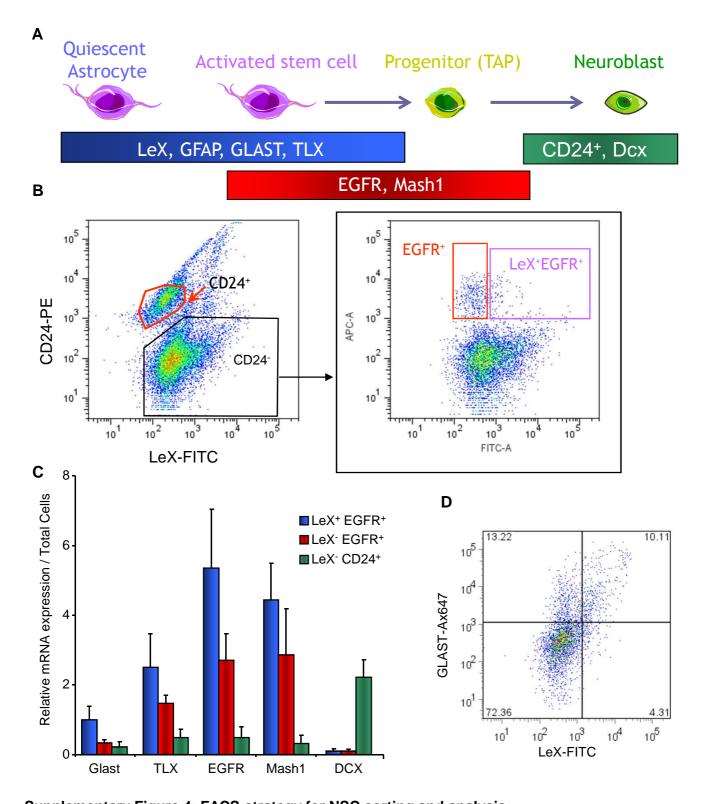

Jose R. PINEDA, Mathieu DAYNAC, Alexandra CHICHEPORTICHE, Arantxa CEBRIAN-SILLA, Karine SII FELICE, Jose Manuel GARCIA-VERDUGO, François D. BOUSSIN and Marc-André MOUTHON

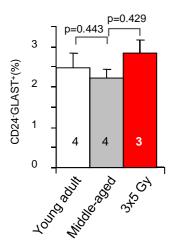
Supplementary information	Content	
Supplementary Figure1:	Split dose radiation does not mobilize microglial cells	
Supplementary Figure 2:	Cells that resemble NSCs are present in the irradiated brain	
Supplementary Figure 3:	Irradiation blocks proliferation in the SVZ	
Supplementary Figure 4:	FACS strategy for NSC sorting and analysis	
Supplementary Figure 5:	NSCs with a GLAST+CD24- phenotype are maintained in the SVZ following irradiation	
Supplementary Figure 6:	Grafted NSCs differentiate into neurons and migrate in the OBs	
Supplementary Figure 7:	Phospho-Smad2 is undetectable in the SVZ	
Supplementary Figure 8:	Irradiated BECs induce neural progenitor apoptosis through TGFβ	
Supplementary Figure 9:	The inhibitory effect of $TGF\beta 1$ on neurosphere growth is blocked by treatment with an anti- $TGF\beta$ blocking antibody	
Supplementary Figure 10:	Alteration of mural coverage with anti-TGFβ therapy	
Supplementary Figure 11:	SB-505124 increases production of neuroblasts and proliferation of NSCs in both irradiated and elderly mice	
Supplementary Table 1:	Phenotype of TGFβ-positive cells in SVZ	
Supplementary Table 2:	P-values for TGFβ-binding on SVZ cells as compared to young adult mice	
Supplementary Table 3:	Primary antibodies	
Supplementary Table 4:	Primer sequences	


Supplementary Figure 1: Split dose radiation does not mobilize microglial cells

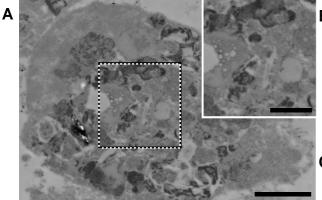

Immunohistochemistry for CD68 (A-C) and Iba1 (D-F) revealed microglial cells in a region that encompassed the proximal striatum and the SVZ of control (A and D) and irradiated mice 2 months following exposure (B and E). Quantifications (mean \pm s.d.) of CD68-positive cells (C) and Iba1 (F) revealed that the 3x5 Gy split-exposure does not mobilise microglial cells into the brain. Scale bars = 100μ m. V: ventricle. The *p*-value was determined using the Mann–Whitney U-test. The number of mice is indicated within bars.

Supplementary Figure 2: Cells that resemble NSCs are present in the irradiated brain

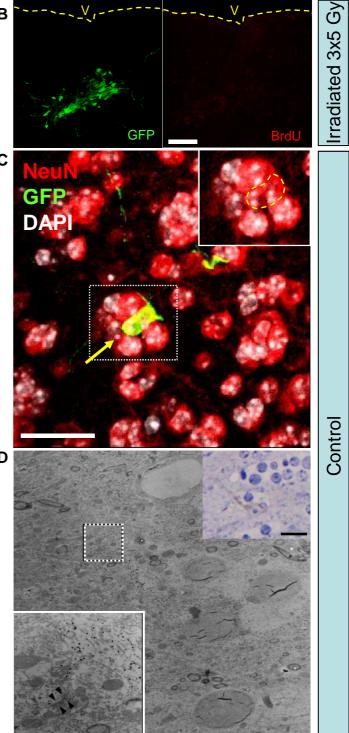

In control mice, NSCs lining lateral ventricle are characterised by their positivity for GFAP (A) and negativity for S100 β (A') a marker associated with differentiated astrocytes and ependymal cells. Certain NSCs survived in the SVZ 4 months following irradiation (B-B"). The survival of astrocytic-like NSCs was confirmed by nestin/GFAP double immunostaining (C). Scale bars = 100 μ m.

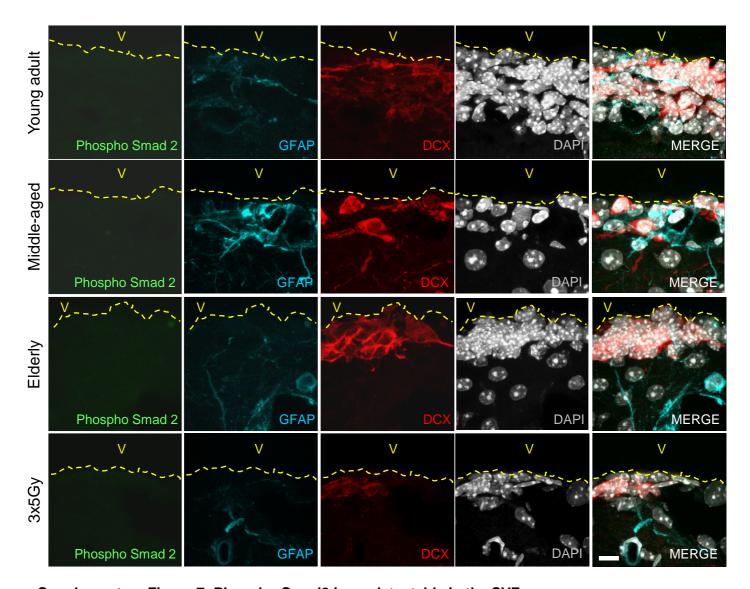

Supplementary Figure 3: Irradiation blocks proliferation in the SVZ

Ki-67 immunostaining and nuclei staining with DAPI indicated that cell proliferation was profoundly reduced in the SVZ 4 months following exposure (B, B') in comparison to the control mice (A, A'). The mean ± s.d. are shown in C and D. The p-value was determined using the Mann–Whitney Utest. The number of mice is indicated within bars.

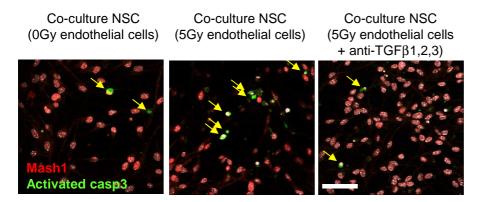

Supplementary Figure 4: FACS strategy for NSC sorting and analysis

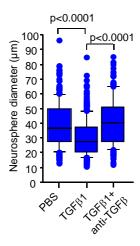
(A) Schematic representation of NSCs and their progeny in the SVZ, and the expression of several markers. (B) Sorting gates are represented for the neuroblasts (CD24⁺), activated NSCs (CD24⁻LeX⁺EGFR⁺) and TAPs (CD24⁻LeX⁺EGFR⁻). (C) The expression of specific markers for NSCs, TAPs and neuroblasts was examined for sorted populations by qRT-PCR. The mean \pm s.d. were obtained from pooled samples with n = 8-10 mice in three independent sorting experiments. (D) FACS analysis of CD24⁻ cells in the SVZ showed that nearly all of the LeX+ cells express GLAST, although a subset of GLAST⁺ cells were observed to be LeX-negative.


Supplementary Figure 5: NSCs with a CD24-GLAST+ phenotype are maintained in the SVZ following irradiation and during aging

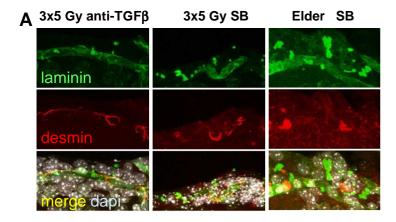

The quantification of CD24-GLAST+ in the SVZ by FACS in young adult (2-4 months), middle-aged (12 months) and young adult mice 3-4 months after the 3x5 Gy split-dose irradiation. The mean \pm s.d. is shown (the number of mice is indicated within the bars). The p-value was determined using the Mann–Whitney U-test.

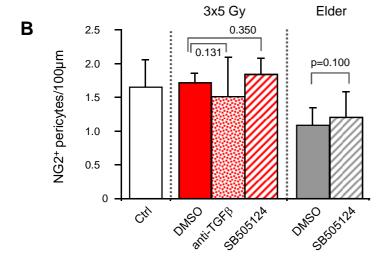
Supplementary Figure 6: Grafted NSCs differentiate into neurons and migrate in the OBs


(A) No evidence of phagocytosis of grafted GFP+ by host macrophages cells was observed one month following transplantation. (B) NSC-enriched GFP+ cells that were transplanted into irradiated hosts did not incorporate BrdU. (C) In non-irradiated hosts, a subset of the GFP+ cells migrated into the OBs and expressed the neuronal marker NeuN. (D) A GFP+ cell in the OB with a dendritic spine that contacts a synapse (arrowheads) of a host cell. Scale bars: 2 μ m in A, 50 μ m in B-C, 10 μ m in D.

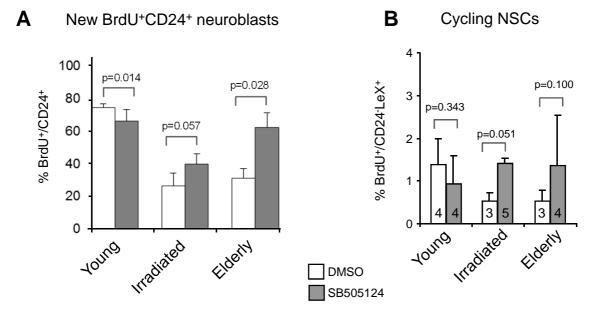

Supplementary Figure 7: Phospho-Smad2 is undetectable in the SVZ

Triple immunostaining for phospho-Smad 2, GFAP and doublecortin (DCX) allows for the examination of neurogenic niches in the SVZ (V: lateral ventricle). Smad2 phosphorylation was undetectable. The illustrations are representative of three different experiments, with three mice per group. Scale bar = $10\mu m$.


Supplementary Figure 8: Irradiated BECs induce neural progenitor apoptosis via $TGF\beta$


Apoptosis (activated caspase 3) of Mash1-positive neural stem/progenitor cells in co-culture with irradiated endothelial cells was reduced following treatment with a blocking anti-TGF β antibody. Scale bar = 50 μ m.

Supplementary Figure 9: The inhibitory effect of TGF β 1 on neurosphere growth is blocked by treatment with an anti-TGF β blocking antibody


The neurosphere size was determined 7 days following the addition of TGF β 1 (1 ng/ml) in the presence or absence of an anti-TGF β blocking antibody. The mean \pm s.d. was obtained from at least 248 neurospheres per condition in two individual cultures. The *p*-value was determined using Student's *t*-test.

Supplementary Figure 10: Alteration of mural coverage with anti-TGF β therapy

(A) The effects SB-505124 or of the anti-TGF β blocking antibody were examined on mural coverage of SVZ capillaries using desmin/laminin immunostainings. (B) NG2/pericytes were quantified on SVZ capillaries. Scale bar: 50 µm. The mean ± s.d. of two independent experiments is shown. The *p*-value was determined using the Mann–Whitney U-test.

Supplementary Figure 11: SB-505124 increases production of neuroblasts and proliferation of NSCs in both irradiated and elderly mice

SB-505124 was administered for 5 days in young adult, irradiated or elderly mice. The mice were euthanised one day after the final treatment. The incorporation of BrdU was determined by FACS analysis of CD24⁺ neuroblasts (A) and of CD24⁻LeX⁺ NSCs (B). The mean \pm s.d. of two independent experiments is shown (the number of mice is indicated within bars). The p-value was determined using the Mann–Whitney U-test.

Supplementary Table 1: Phenotype of $\mathsf{TGF}\beta\text{-positive}$ cells in SVZ

Cycling	Nblast	TAPs	Activated NSCs	NSCs
DNA>2N	CD24+	EGF+	LeX+EGF+CD24-	GLAST+CD24-
4 ± 1%	3 ± 2%	17 ± 2%	48 ± 2%	27 ± 4%

Supplementary Table 2: P-values for TGF β -binding on SVZ cells compared to young adult mice

	Middle-aged	Elder	3x5 Gy
Neuroblats	0.564	0.564	>0.999
Cycling	0.147	0.020	0.020
TAPs	>0.999	0.439	0.439
NSCs	0.121	0.121	0.439

Supplementary Table 3: Primary antibodies

Target	Host	Clone/ref	Dilution	Provider
GFAP	Ms	GA5	400	Millipore
ld1	Ms	7D4	100	Millipore
NeuN	Ms	A60	100	Millipore
Sox2	Ms	6F1.2	100	Millipore
Cyclin D1	Rb	06-137	200	Millipore
p21waf	Ms	Clone 65	100	Millipore
Smad2/3	Rb	071408	2000a	Millipore
GFP	Rb	Ab290	200/1000 ^b	Abcam
TGFb1	Ms	2Ar2	50/500a	Abcam
phospho-Smad3 (S423/425)	Rb	ab51451	100/1000a	Abcam
TGFb receptor I	Rb	ab31013	100	Abcam
TGFb receptor II	Rb	ab61213	100	Abcam
phospho-Smad2 (S465/467)	Rb	mAb3101	100	Cell Signalling
cleaved caspase-3	Rb	mAb9579	100	Cell Signalling
Laminin	Rb	L9393	50	Sigma-Aldrich
Desmin	Ms	D33	150	Dako
NG2	Ms	AB5320	150	Millipore
a-tubulin	Ms	DM1A	1000 ^a	Sigma-Aldrich
GFAP	Rb	G9269	400	Sigma-Aldrich
blll-tubulin	Rb	PRB-435P	200	Covance
Ki-67	Ms	MM1	100	Covance
Nestin	Ms	Rat401	200	Becton Dickinson
Mash1	Ms	24B7.2D11	50	Becton Dickinson
CD15/LeX	Ms	MMA	100	Becton Dickinson
CD68	Rat	FA-11	100	AbDSerotec
S100b	Rb	Z0311	200	Dako
BrdU	Ms	RPN202	300	GE Healthcare
Doublecortin	Goat	C-18	200	SantaCruz
CD24-PE	Rat	30-F1	500	Becton Dickinson
LeX/CD15-FITC	Ms	MMA	50	Becton Dickinson
CD31-PE	Rat	MEC13.3	50	Becton Dickinson
CD45-PC5 or PE	Rat	30-F11	50	Becton Dickinson
GLAST	Rat	ACSA-1	50	Miltenyi
				-

^aDilution is given for western blot. ^bDilution is given for DAB revelation.

Supplemental Table 4: Primer sequences

Target gene	Forward primer 5' → 3'	Reverse primer 5' → 3'
Gapdh	CCAGTATGACTCCACTCACG	GACTCCACGACATACTCAGC
18S	ATACATGCCGACGGGCGCTG	AGGGAGCTCACCGGGTTGGTT
Tlx	ATGCCCCGTAGACAAGACAC	CGGAAGTAGAGAGCCACCTG
Mash1	TGTCTTCCTCAGTCACCCC	GAAAGGCTGTCCGAGAACTG
Dcx	TCCCCAACACCTCAAAAGAC	TTGAGAGCTGACTGCTGGAA
TGFβ1	GGTGTCAGAGCCTCACCGCG	AGAGCGGGAACCCTCGGCAA

Primers were purchased from Eurogentec.